checked by TT 3/3/2016

#### **MEMORANDUM**

TO: Mr. Addison Rice

Anderson, Mulholland and Associates

DATE: February 27, 2016

FROM: R. Infante

FILE: 1602064B

RE:

Data Validation
Air samples
SDG: 1602064B

### **SUMMARY**

Full validation was performed on the data for several gas samples analyzed for volatile organic compounds (full suite) by method Compendium Method TO-15: Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999. The samples were collected at the Bristol Myer Squib, Humacao, PR site on January 31, 2016 and submitted to Eurofins Air Toxics, Inc. of Folson, California that analyzed and reported the results under delivery groups (SDG) 1602064B.

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: Compendium Method TO-15. Determination Of Volatile Organic Compounds (VOCas) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999; Validating Air Samples. Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HW-31. Revision #4. October, 2006. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

In general the data is valid as reported and may be used for decision making purposes. The data results are acceptable for use. Result for 1,2,4-trichlorobenzene was qualified as estimated (J) in sample 1602064B-11A due to continuing calibration check outside method performance limit.

# SAMPLES The samples included in the review are listed below

| Client<br>Sample ID | Lab. Sample ID | Collected<br>Date | Matrix | Analysis |
|---------------------|----------------|-------------------|--------|----------|
| B30-1SSV013116      | 1602064B-11A   | 01/31/2016        | Air    | VOCs     |
| B30-2SSV013116      | 1602064B-12A   | 01/31/2016        | Air    | VOCs     |
| B30-3SSV013116      | 1602064B-13A   | 01/31/2016        | Air    | VOCs     |
| B30-4DSSV013116     | 1602064B-14A   | 01/31/2016        | Air    | VOCs     |
| B30-5SSV013116      | 1602064B-15A   | 01/31/2016        | Air    | VOCs     |

| Client<br>Sample ID | Lab. Sample ID | Collected<br>Date | Matrix | Analysis |
|---------------------|----------------|-------------------|--------|----------|
| B42-1SSV013116      | 1602064B-16A   | 01/31/2016        | Air    | VOCs     |
| B42-2SSV013116      | 1602064B-17A   | 01/31/2016        | Air    | VOCs     |
| B42-3SSV013116      | 1602064B-18A   | 01/31/2016        | Air    | VOCs     |
| B3042AA013016       | 1602064B-10A   | 01/31/2016        | Air    | VOCs     |

#### **REVIEW ELEMENTS**

Sample data were reviewed for the following parameters, where applicable to the method

- o Agreement of analysis conducted with chain of custody (COC) form
- o Holding time and sample preservation
- Gas chromatography/mass spectrometry (GC/MS) tunes
- o Initial and continuing calibrations
- o Method blanks/trip blanks/field blank
- o Canister cleaning certification criteria
- Surrogate spike recovery
- o Internal standard performance and retention times
- o Field duplicate results
- o Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- o Quantitation limits and sample results

#### DISCUSSION

### Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

# **Holding Times and Sample Preservation**

Sample preservation was acceptable.

Samples analyzed within method recommended holding time.

### **GC/MS Tunes**

The frequency and abundance of bromofluorobenzene (BFB) tunes were within the QC acceptance criteria. All samples were analyzed within the tuning criteria associated with the method.

### **Initial and Continuing Calibrations**

### VOCs - (Method TQ-15)

Initial calibration meets method performance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard, continuing calibration meet the method performance criteria except for the following analytes:

| DATE       | LAB FILE ID# | CRITERIA OUT             | COMPOUND                    | SAMPLES      |
|------------|--------------|--------------------------|-----------------------------|--------------|
|            |              | RFs, %RSD, <u>%D</u> , r |                             | AFFECTED     |
|            |              | n met the method perf    | ormance criteria except for |              |
| 02/15/2016 | 1602064B-20B | 33 %                     | 1,2,4-                      | 1602064B-11A |
|            |              |                          | Trichlorobenzene            | İ            |
|            |              |                          |                             |              |

Results qualified estimated (J) in affected samples.

### Method Blank/Trip Blank/Field Blank

Target analytes were not detected in laboratory method blanks above the reporting concentration/action level.

Summa canister met cleaning certification criteria.

No trip/field blank analyzed with this data package.

### Surrogate Spike Recovery

The surrogate recoveries as per method TO-15 were within the laboratory QC acceptance limits in all samples analyzed.

### **Internal Standard Performance**

### VOCs -

Samples were spiked with the method specified internal standard. Internal standard are performance and retention times met the QC acceptance criteria in all sample analyses and calibration standards.

### **Laboratory/Field Duplicate Results**

Laboratory duplicates (LCS/LCSD) were analyzed as part of this data set. Target analytes meet the RPD performance criteria of +25 % for analytes  $5 \times SQL$ . No field duplicate collected with this data package. Field duplicate for the project included in data package SDG 1602024A.

### LCS/LCSD Results

LCS/LCSD (blank spike) analyzed by the laboratory associated with this data package; % recoveries and RPD within laboratory and generally acceptable control limits.

#### **Quantitation Limits and Sample Results**

Dilutions were performed on TO-15 samples due to analytes concentration over the calibration range (see worksheet).

Calculations were spot checked.

## Certification

The following samples 1602064B-11A; 1602064B-12A; 1602064B-13A; 1602064B-14A; 1602064B-15A; 1602064B-16A; 1602064B-17A; and 1602064B-18A were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. The results are valid some of the results were qualified.

Mendez

Rafael Infante

Chemist License 1888



# Client Sample ID: B30-1SSV013116 Lab ID#: 1602064B-11A

# EPA METHOD TO-15 GC/MS

| File Name:<br>Dil. Factor:       | 14021509<br>796      |                              | of Collection: 1/3 of Analysis: 2/15/ |                              |
|----------------------------------|----------------------|------------------------------|---------------------------------------|------------------------------|
|                                  |                      |                              | -                                     |                              |
| Compound                         | Rpt. Limit<br>(ppbv) | Amount                       | Rpt. Limit<br>(ug/m3)                 | Amount<br>(ug/m3)            |
|                                  |                      | (ppbv)                       |                                       |                              |
| Freon 12                         | 4000                 | Not Detected                 | 20000                                 | Not Detected                 |
| Freon 114                        | 4000                 | Not Detected                 | 28000                                 | Not Detected                 |
| Chloromethane                    | 16000                | Not Detected                 | 33000                                 | Not Detected                 |
| Vinyl Chloride                   | 4000                 | Not Detected                 | 10000                                 | Not Detected                 |
| 1,3-Butadiene                    | 4000                 | Not Detected                 | 8800                                  | Not Detected                 |
| Bromomethane                     | 4000                 | Not Detected                 | 15000                                 | Not Detected                 |
| Chloroethane                     | 16000                | Not Detected                 | 42000                                 | Not Detected                 |
| Freon 11                         | 4000                 | Not Detected                 | 22000                                 | Not Detected                 |
| Ethanol                          | 16000                | Not Detected                 | 30000                                 | Not Detected                 |
| Freon 113                        | 4000                 | Not Detected                 | 30000                                 | Not Detected                 |
| 1,1-Dichloroethene               | 4000                 | Not Detected                 | 16000                                 | Not Detected                 |
| Acetone                          | 16000                | Not Detected                 | 38000                                 | Not Detected                 |
| 2-Propanol                       | 16000                | Not Detected                 | 39000                                 | Not Detected                 |
| Carbon Disulfide                 | 4000                 | Not Detected                 | 12000                                 | Not Detected                 |
| 3-Chloropropene                  | 16000                | Not Detected                 | 50000                                 | Not Detected                 |
| Methylene Chloride               | 4000                 | Not Detected                 | 14000                                 | Not Detected                 |
| Methyl tert-butyl ether          | 4000                 | Not Detected                 | 14000                                 | Not Detected                 |
| trans-1,2-Dichloroethene         | 4000                 | Not Detected                 | 16000                                 | Not Detected                 |
| Hexane                           | 4000                 | Not Detected                 | 14000                                 | Not Detected                 |
| 1,1-Dichloroethane               | 4000                 | Not Detected                 | 16000                                 | Not Detected                 |
| 2-Butanone (Methyl Ethyl Ketone) | 16000                | Not Detected                 | 47000                                 | Not Detected                 |
| cis-1,2-Dichloroethene           | 4000                 | Not Detected                 | 16000                                 | Not Detected                 |
| Tetrahydrofuran                  | 4000                 | Not Detected                 | 12000                                 | Not Detected                 |
| Chloroform                       | 4000                 | Not Detected                 | 19000                                 | Not Detected                 |
| 1,1,1-Trichloroethane            | 4000                 | Not Detected                 | 22000                                 | Not Detected                 |
| Cyclohexane                      | 4000                 | 820 J                        | 14000                                 | 2800 J                       |
| Carbon Tetrachloride             | 4000                 | Not Detected                 | 25000                                 | Not Detected                 |
| 2,2,4-Trimethylpentane           | 4000                 | Not Detected                 | 18000                                 | Not Detected                 |
| Benzene                          | 4000                 | Not Detected                 | 13000                                 | Not Detected                 |
| 1,2-Dichloroethane               | 4000                 | Not Detected                 | 16000                                 | Not Detected                 |
|                                  | 4000                 | Not Detected                 | 16000                                 | Not Detected                 |
| Heptane                          | 4000                 |                              |                                       |                              |
| Trichloroethene                  |                      | Not Detected<br>Not Detected | 21000                                 | Not Detected<br>Not Detected |
| 1,2-Dichloropropane              | 4000                 | Not Detected Not Detected    | 18000                                 |                              |
| 1,4-Dioxane Bromodichloromethane | 16000                |                              | 57000<br>27000                        | Not Detected                 |
|                                  | 4000                 | Not Detected                 |                                       | Not Detected                 |
| cis-1,3-Dichloropropene          | 4000                 | Not Detected                 | 18000                                 | Not Detected                 |
| 4-Methyl-2-pentanone             | 4000                 | Not Detected                 | 16000                                 | Not Detected                 |
| Toluene                          | 4000                 | Not Detected                 | 15000                                 | Not Detected                 |
| trans-1,3-Dichloropropene        | 4000                 | Not Detected                 |                                       | Not Detected                 |
| 1,1,2-Trichloroethane            | 4000                 | Not Detected                 | 22000                                 | Noticeted                    |
| Tetrachloroethene                | 4000                 | Not Detected                 |                                       | ci indiate Descrite          |
| 2-Hexanone                       | 16000                | Not Detected                 |                                       | fendebot De tec              |



# Client Sample ID: B30-1SSV013116 Lab ID#: 1602064B-11A

# **EPA METHOD TO-15 GC/MS**

| File Name:<br>Dil. Factor: | 14021509<br>796      | Date of Collection: 1/31/16 12:24<br>Date of Analysis: 2/15/16 02:32 F |                              | * **            |
|----------------------------|----------------------|------------------------------------------------------------------------|------------------------------|-----------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv)                                                       | Rpt. Limit Am<br>(ug/m3) (ug |                 |
| Dibromochloromethane       | 4000                 | Not Detected                                                           | 34000                        | Not Detected    |
| 1,2-Dibromoethane (EDB)    | 4000                 | Not Detected                                                           | 30000                        | Not Detected    |
| Chlorobenzene              | 4000                 | Not Detected                                                           | 18000                        | Not Detected    |
| Ethyl Benzene              | 4000                 | 14000                                                                  | 17000                        | 61000           |
| m,p-Xylene                 | 4000                 | 440000                                                                 | 17000                        | 1900000         |
| o-Xylene                   | 4000                 | 8400                                                                   | 17000                        | 36000           |
| Styrene                    | 4000                 | Not Detected                                                           | 17000                        | Not Detected    |
| Bromoform                  | 4000                 | Not Detected                                                           | 41000                        | Not Detected    |
| Cumene                     | 4000                 | Not Detected                                                           | 20000                        | Not Detected    |
| 1,1,2,2-Tetrachloroethane  | 4000                 | Not Detected                                                           | 27000                        | Not Detected    |
| Propylbenzene              | 4000                 | Not Detected                                                           | 20000                        | Not Detected    |
| 4-Ethyltoluene             | 4000                 | Not Detected                                                           | 20000                        | Not Detected    |
| 1,3,5-Trimethylbenzene     | 4000                 | Not Detected                                                           | 20000                        | Not Detected    |
| 1,2,4-Trimethylbenzene     | 4000                 | Not Detected                                                           | 20000                        | Not Detected    |
| 1,3-Dichlorobenzene        | 4000                 | Not Detected                                                           | 24000                        | Not Detected    |
| 1,4-Dichlorobenzene        | 4000                 | Not Detected                                                           | 24000                        | Not Detected    |
| alpha-Chlorotoluene        | 4000                 | Not Detected                                                           | 21000                        | Not Detected    |
| 1,2-Dichlorobenzene        | 4000                 | Not Detected                                                           | 24000                        | Not Detected    |
| 1,2,4-Trichlorobenzene     | 16000                | Not Detected UJ 3                                                      | 120000                       | Not Detected U. |
| Hexachlorobutadiene        | 16000                | Not Detected                                                           | 170000                       | Not Detected    |
| Naphthalene                | 16000                | Not Detected                                                           | 83000                        | Not Detected    |

## J = Estimated value.

UJ = Analyte associated with low bias in the CCV and/or LCS. Container Type: 1 Liter Summa Canister

|                       |           | Method     |
|-----------------------|-----------|------------|
| Surrogates            | %Recovery | Limits     |
| 1,2-Dichloroethane-d4 | 99        | 70-130     |
| Toluene-d8            | 98        | 70-130     |
| 4-Bromofluorobenzene  | 100       | 70-130     |
|                       |           | - SOUTHULL |

afael Infan Mendez



# Client Sample ID: B30-2SSV013116 Lab ID#: 1602064B-12A

# **EPA METHOD TO-15 GC/MS FULL SCAN**

| File Name:<br>Dil. Factor:                       | p020818<br>2.32 |                              | of Collection: 1/3 of Analysis: 2/8/ | 31/16 12:40:00 PM<br>16 07:43 PM |
|--------------------------------------------------|-----------------|------------------------------|--------------------------------------|----------------------------------|
|                                                  | Rpt. Limit      | Amount                       | Rpt. Limit                           | Amount                           |
| Compound                                         | (ppbv)          | (ppbv)                       | (ug/m3)                              | (ug/m3)                          |
| Freon 12                                         | 1.2             | 0.48 J                       | 5.7                                  | 2.4 J                            |
| Freon 114                                        | 1.2             | Not Detected                 | 8.1                                  | Not Detected                     |
| Chloromethane                                    | 12              | Not Detected                 | 24                                   | Not Detected                     |
| Vinyl Chloride                                   | 1.2             | Not Detected                 | 3.0                                  | Not Detected                     |
| 1,3-Butadiene                                    | 1.2             | Not Detected                 | 2.6                                  | Not Detected                     |
| Bromomethane                                     | 12              | Not Detected                 | 45                                   | Not Detected                     |
| Chloroethane                                     | 4.6             | Not Detected                 | 12                                   | Not Detected                     |
| Freon 11                                         | 1.2             | 0.24 J                       | 6.5                                  | 1.4 J                            |
| Ethanol                                          | 4.6             | 7.3                          | 8.7                                  | 14                               |
| Freon 113                                        | 1.2             | Not Detected                 | 8.9                                  | Not Detected                     |
| 1,1-Dichloroethene                               | 1.2             | Not Detected                 | 4.6                                  | Not Detected                     |
| Acetone                                          | 12              | 8.2 J                        | 28                                   | 20 J                             |
| 2-Propanol                                       | 4.6             | 9.2                          | 11                                   | 23                               |
| Carbon Disulfide                                 | 4.6             | Not Detected                 | 14                                   | Not Detected                     |
| 3-Chloropropene                                  | 4.6             | Not Detected                 | 14                                   | Not Detected                     |
| Methylene Chloride                               | 12              | Not Detected                 | 40                                   | Not Detected                     |
| Methyl tert-butyl ether                          | 1.2             | Not Detected                 | 4.2                                  | Not Detected                     |
| trans-1,2-Dichloroethene                         | 1.2             | Not Detected                 | 4.6                                  | Not Detected                     |
| Hexane                                           | 1.2             | Not Detected                 | 4.1                                  | Not Detected                     |
| 1,1-Dichloroethane                               | 1.2             | Not Detected                 | 4.7                                  | Not Detected                     |
| 2-Butanone (Methyl Ethyl Ketone)                 | 4.6             | 1.6 J                        | 14                                   | 4.6 J                            |
| cis-1,2-Dichloroethene                           | 1.2             | Not Detected                 | 4.6                                  | Not Detected                     |
| Tetrahydrofuran                                  | 1.2             | Not Detected                 | 3.4                                  | Not Detected                     |
| Chloroform                                       | 1.2             | Not Detected                 | 5.7                                  | Not Detected                     |
| 1,1,1-Trichloroethane                            | 1.2             | Not Detected                 | 6.3                                  | Not Detected                     |
| Cyclohexane                                      | 1.2             | Not Detected                 | 4.0                                  | Not Detected                     |
| Carbon Tetrachloride                             | 1.2             | Not Detected                 | 7.3                                  | Not Detected                     |
| 2,2,4-Trimethylpentane                           | 1.2             | 0.17 J                       | 5.4                                  | 0.79 J                           |
| Benzene                                          | 1.2             | Not Detected                 | 3.7                                  | Not Detected                     |
| 1,2-Dichloroethane                               | 1.2             | Not Detected                 | 4.7                                  | Not Detected                     |
| Heptane                                          | 1.2             | 0.67 J                       | 4.8                                  | 2.8 J                            |
| Trichloroethene                                  | 1.2             | Not Detected                 | 6.2                                  | Not Detected                     |
| 1,2-Dichloropropane                              | 1.2             | Not Detected                 | 5.4                                  | Not Detected                     |
| 1,4-Dioxane                                      | 4.6             | Not Detected                 | 17                                   | Not Detected                     |
| Bromodichloromethane                             | 1.2             | Not Detected                 | 7.8                                  | Not Detected                     |
| cis-1,3-Dichloropropene                          | 1.2             | Not Detected                 |                                      |                                  |
| dis-1,3-Dictiloropropene<br>4-Methyl-2-pentanone | 1.2             | Not Detected                 | 4.8 (6)                              | Not Detected                     |
| 4-metryi-z-pentanone<br>Toluene                  | 1.2             | 0.24 J                       | 4.0                                  | a lected                         |
| trans-1,3-Dichloropropene                        | 1.2             | Not Detected                 | 5.3.0                                | Not Da                           |
| • • •                                            | 1.2             | Not Detected                 | 1 - 1 4 1 1 1                        | fael Millian                     |
| 1,1,2-Trichloroethane                            |                 |                              | 6.3                                  | Men of Determen                  |
| Tetrachloroethene<br>2-Hexanone                  | 1.2<br>4.6      | Not Detected<br>Not Detected | 19                                   | Not Detected                     |
|                                                  | Pa              | ge 1                         |                                      | O LICENSO of O                   |



# Client Sample ID: B30-2SSV013116 Lab ID#: 1602064B-12A

# EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor: | p020818<br>2.32      | Date of Collection: 1/31/16 12:40:00  Date of Analysis: 2/8/16 07:43 PM |                    |                   |
|----------------------------|----------------------|-------------------------------------------------------------------------|--------------------|-------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount (ppbv)                                                           | Rpt. Limit (ug/m3) | Amount<br>(ug/m3) |
| Dibromochloromethane       | 1.2                  | Not Detected                                                            | 9.9                | Not Detected      |
| 1,2-Dibromoethane (EDB)    | 1.2                  | Not Detected                                                            | 8.9                | Not Detected      |
| Chlorobenzene              | 1.2                  | Not Detected                                                            | 5.3                | Not Detected      |
| Ethyl Benzene              | 1.2                  | Not Detected                                                            | 5.0                | Not Detected      |
| m,p-Xylene                 | 1.2                  | Not Detected                                                            | 5.0                | Not Detected      |
| o-Xylene                   | 1.2                  | Not Detected                                                            | 5.0                | Not Detected      |
| Styrene                    | 1.2                  | Not Detected                                                            | 4.9                | Not Detected      |
| Bromoform                  | 1.2                  | Not Detected                                                            | 12                 | Not Detected      |
| Cumene                     | 1.2                  | Not Detected                                                            | 5.7                | Not Detected      |
| 1,1,2,2-Tetrachloroethane  | 1.2                  | Not Detected                                                            | 8.0                | Not Detected      |
| Propylbenzene              | 1.2                  | Not Detected                                                            | 5,7                | Not Detected      |
| 4-Ethyltoluene             | 1.2                  | Not Detected                                                            | 5.7                | Not Detected      |
| 1,3,5-Trimethylbenzene     | 1.2                  | Not Detected                                                            | 5.7                | Not Detected      |
| 1,2,4-Trimethylbenzene     | 1.2                  | Not Detected                                                            | 5.7                | Not Detected      |
| 1,3-Dichlorobenzene        | 1.2                  | Not Detected                                                            | 7.0                | Not Detected      |
| 1,4-Dichlorobenzene        | 1.2                  | Not Detected                                                            | 7.0                | Not Detected      |
| alpha-Chlorotoluene        | 1.2                  | Not Detected                                                            | 6.0                | Not Detected      |
| 1,2-Dichlorobenzene        | 1.2                  | Not Detected                                                            | 7.0                | Not Detected      |
| 1,2,4-Trichlorobenzene     | 4.6                  | Not Detected                                                            | 34                 | Not Detected      |
| Hexachlorobutadiene        | 4.6                  | Not Detected                                                            | 49                 | Not Detected      |

J = Estimated value.

Naphthalene

Container Type: 1 Liter Summa Canister

| Surrogates            | %Recovery | Method<br>Limits |
|-----------------------|-----------|------------------|
| Toluene-d8            | 100       | 70-130           |
| 1,2-Dichloroethane-d4 | 99        | 70-130           |
| 4-Bromofluorobenzene  | 94        | 70-130           |

**Not Detected** 

12

2.3

**Not Detected** 



# Client Sample ID: B30-3SSV013116 Lab ID#: 1602064B-13A

### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:                       | p020817    | Date of Collection: 1/31/16 1:00:00 PM |                     |                       |
|----------------------------------|------------|----------------------------------------|---------------------|-----------------------|
| Dil. Factor:                     | 2.51       | Date of Analysis: 2/8/16 07:17 PM      |                     |                       |
|                                  | Rpt. Limit | Amount                                 | Rpt. Limit          | Amount                |
| Compound                         | (ppbv)     | (ppbv)                                 | (ug/m3)             | (ug/m3)               |
| Freon 12                         | 1.2        | 0.62 J                                 | 6.2                 | 3,1 J                 |
| Freon 114                        | 1.2        | Not Detected                           | 8.8                 | Not Detected          |
| Chloromethane                    | 12         | Not Detected                           | 26                  | Not Detected          |
| √inyl Chloride                   | 1.2        | Not Detected                           | 3,2                 | Not Detected          |
| 1,3-Butadiene                    | 1.2        | Not Detected                           | 2.8                 | Not Detected          |
| Bromomethane                     | 12         | Not Detected                           | 49                  | Not Detected          |
| Chloroethane                     | 5.0        | Not Detected                           | 13                  | Not Detected          |
| reon 11                          | 1.2        | 0.28 J                                 | 7.0                 | 1,6 J                 |
| Ethanol                          | 5.0        | 8.8                                    | 9.4                 | 16                    |
| Freon 113                        | 1.2        | Not Detected                           | 9.6                 | Not Detected          |
| I,1-Dichloroethene               | 1.2        | Not Detected                           | 5.0                 | Not Detected          |
| Acetone                          | 12         | 7.7 J                                  | 30                  | 18 J                  |
| 2-Propanol                       | 5.0        | 9.8                                    | 12                  | 24                    |
| Carbon Disulfide                 | 5,0        | Not Detected                           | 16                  | Not Detected          |
| 3-Chloropropene                  | 5,0        | Not Detected                           | 16                  | Not Detected          |
| Methylene Chloride               | 12         | Not Detected                           | 44                  | Not Detected          |
| Methyl tert-butyl ether          | 1,2        | Not Detected                           | 4.5                 | Not Detected          |
| rans-1,2-Dichloroethene          | 1.2        | Not Detected                           | 5.0                 | Not Detected          |
| Hexane                           | 1.2        | Not Detected                           | 4.4                 | Not Detected          |
| I,1-Dichloroethane               | 1.2        | Not Detected                           | 5.1                 | Not Detected          |
|                                  | 5.0        | Not Detected                           | 15                  | Not Detected          |
| 2-Butanone (Methyl Ethyl Ketone) |            | Not Detected                           |                     |                       |
| cis-1,2-Dichloroethene           | 1.2<br>1.2 |                                        | 5.0                 | Not Detected          |
| Tetrahydrofuran                  |            | Not Detected                           | 3.7                 | Not Detected          |
| Chloroform                       | 1.2        | Not Detected                           | 6.1                 | Not Detected          |
| I,1,1-Trichloroethane            | 1.2        | Not Detected                           | 6.8                 | Not Detected          |
| Cyclohexane                      | 1.2        | Not Detected                           | 4.3                 | Not Detected          |
| Carbon Tetrachloride             | 1,2        | Not Detected                           | 7.9                 | Not Detected          |
| 2,2,4-Trimethylpentane           | 1,2        | Not Detected                           | 5.9                 | Not Detected          |
| Benzene                          | 1.2        | Not Detected                           | 4.0                 | Not Detected          |
| 1,2-Dichloroethane               | 1.2        | Not Detected                           | 5.1                 | Not Detected          |
| leptane                          | 1.2        | 0.72 J                                 | 5.1                 | 3.0 J                 |
| richloroethene                   | 1.2        | Not Detected                           | 6.7                 | Not Detected          |
| ,2-Dichloropropane               | 1.2        | Not Detected                           | 5.8                 | Not Detected          |
| ,4-Dioxane                       | 5.0        | Not Detected                           | 18                  | Not Detected          |
| Bromodichloromethane             | 1.2        | Not Detected                           | 8.4                 | Not Detected          |
| :is-1,3-Dichloropropene          | 1.2        | Not Detected                           | SOCIAGO             | Not Detected          |
| I-Methyl-2-pentanone             | 1.2        | Not Detected                           | OF PRINTERS         | Not Detected          |
| foluene                          | 1.2        | 0.24 J                                 | 4.7                 | 0.91 J                |
| rans-1,3-Dichloropropene         | 1.2        | Not Detected                           | S       Sel tofante | Not Detected          |
| ,1,2-Trichloroethane             | 1.2        | 1.                                     | Alendez             | <b>8</b> Not Detected |
| Tetrachloroethene                | 1.2        | Not Detected                           | 18.5: 1888          | Not Detected          |
| P-Hexanone                       | 5.0        | Not Detected                           | 20                  | Not Detected          |

Page 1

0038 of 0605



# Client Sample ID: B30-3SSV013116 Lab ID#: 1602064B-13A

## EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor: | p020817<br>2.51      | Date of Collection: 1/31/16 1:00:00 PM<br>Date of Analysis: 2/8/16 07:17 PM |                       |                   |
|----------------------------|----------------------|-----------------------------------------------------------------------------|-----------------------|-------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount (ppbv)                                                               | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| Dibromochloromethane       | 1,2                  | Not Detected                                                                | 11                    | Not Detected      |
| 1,2-Dibromoethane (EDB)    | 1.2                  | Not Detected                                                                | 9.6                   | Not Detected      |
| Chlorobenzene              | 1.2                  | Not Detected                                                                | 5.8                   | Not Detected      |
| Ethyl Benzene              | 1.2                  | Not Detected                                                                | 5.4                   | Not Detected      |
| m,p-Xylene                 | 1.2                  | Not Detected                                                                | 5.4                   | Not Detected      |
| o-Xylene                   | 1.2                  | Not Detected                                                                | 5.4                   | Not Detected      |
| Styrene                    | 1.2                  | Not Detected                                                                | 5.3                   | Not Detected      |
| Bromoform                  | 1.2                  | Not Detected                                                                | 13                    | Not Detected      |
| Cumene                     | 1.2                  | Not Detected                                                                | 6.2                   | Not Detected      |
| 1,1,2,2-Tetrachloroethane  | 1.2                  | Not Detected                                                                | 8.6                   | Not Detected      |
| Propylbenzene              | 1.2                  | Not Detected                                                                | 6.2                   | Not Detected      |
| 4-Ethyltoluene             | 1.2                  | Not Detected                                                                | 6.2                   | Not Detected      |
| 1,3,5-Trimethylbenzene     | 1.2                  | Not Detected                                                                | 6.2                   | Not Detected      |
| 1,2,4-Trimethylbenzene     | 1.2                  | Not Detected                                                                | 6.2                   | Not Detected      |
| 1,3-Dichlorobenzene        | 1.2                  | Not Detected                                                                | 7.5                   | Not Detected      |
| 1,4-Dichlorobenzene        | 1.2                  | Not Detected                                                                | 7.5                   | Not Detected      |
| alpha-Chlorotoluene        | 1.2                  | Not Detected                                                                | 6.5                   | Not Detected      |
| 1,2-Dichlorobenzene        | 1.2                  | Not Detected                                                                | 7.5                   | Not Detected      |
| 1,2,4-Trichlorobenzene     | 5.0                  | Not Detected                                                                | 37                    | Not Detected      |
| Hexachlorobutadiene        | 5.0                  | Not Detected                                                                | 54                    | Not Detected      |

J = Estimated value.

Naphthalene

Container Type: 1 Liter Summa Canister

|                       |           | Metriod |
|-----------------------|-----------|---------|
| Surrogates            | %Recovery | Limits  |
| Toluene-d8            | 100       | 70-130  |
| 1,2-Dichloroethane-d4 | 94        | 70-130  |
| 4-Bromofluorobenzene  | 95        | 70-130  |

Not Detected

13

2.5



Not Detected



# Client Sample ID: B30-4DSSV013116 Lab ID#: 1602064B-14A

### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:                       | p020814              | Date                              | of Collection: 1/3    | 1/16 1:20:00 PM   |
|----------------------------------|----------------------|-----------------------------------|-----------------------|-------------------|
| Dil. Factor:                     | 17.0                 | Date of Analysis: 2/8/16 05:18 PM |                       |                   |
| Compound                         | Rpt. Limit<br>(ppbv) | Amount (ppbv)                     | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| Freon 12                         | 8.5                  | Not Detected                      | 42                    | Not Detected      |
| Freon 114                        | 8.5                  | Not Detected                      | 59                    | Not Detected      |
| Chloromethane                    | 85                   | Not Detected                      | 180                   | Not Detected      |
| Vinyl Chloride                   | 8.5                  | Not Detected                      | 22                    | Not Detected      |
| 1,3-Butadiene                    | 8,5                  | Not Detected                      | 19                    | Not Detected      |
| Bromomethane                     | 85                   | Not Detected                      | 330                   | Not Detected      |
| Chloroethane                     | 34                   | Not Detected                      | 90                    | Not Detected      |
| Freon 11                         | 8.5                  | Not Detected                      | 48                    | Not Detected      |
| Ethanol                          | 34                   | 1600                              | 64                    | 3000              |
| Freon 113                        | 8,5                  | Not Detected                      | 65                    | Not Detected      |
| 1,1-Dichloroethene               | 8.5                  | Not Detected                      | 34                    | Not Detected      |
| Acetone                          | 85                   | 47 J                              | 200                   | 110 J             |
| 2-Propanol                       | 34                   | 1500                              | 84                    | 3600              |
| Carbon Disulfide                 | 34                   | Not Detected                      | 100                   | Not Detected      |
| 3-Chloropropene                  | 34                   | Not Detected                      | 110                   | Not Detected      |
| Methylene Chloride               | 85                   | Not Detected                      | 300                   | Not Detected      |
| Methyl tert-butyl ether          | 8.5                  | Not Detected                      | 31                    | Not Detected      |
| trans-1,2-Dichloroethene         | 8.5                  | Not Detected                      | 34                    | Not Detected      |
| Hexane                           | 8.5                  | Not Detected                      | 30                    | Not Detected      |
| 1,1-Dichloroethane               | 8.5                  | Not Detected                      | 34                    | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 34                   | 17 J                              | 100                   | 51 J              |
| cis-1,2-Dichloroethene           | 8.5                  | Not Detected                      | 34                    | Not Detected      |
| Tetrahydrofuran                  | 8.5                  | Not Detected                      | 25                    | Not Detected      |
| Chloroform                       | 8.5                  | Not Detected                      | 42                    | Not Detected      |
| 1,1,1-Trichloroethane            | 8.5                  | Not Detected                      | 46                    | Not Detected      |
| Cyclohexane                      | 8.5                  | Not Detected                      | 29                    | Not Detected      |
| Carbon Tetrachloride             | 8.5                  | Not Detected                      | 53                    | Not Detected      |
| 2,2,4-Trimethylpentane           | 8.5                  | 1.9 J                             | 40                    | 8.9 J             |
| Benzene                          | 8.5                  | Not Detected                      | 27                    | Not Detected      |
| 1,2-Dichloroethane               | 8.5                  | Not Detected                      | 34                    | Not Detected      |
| Heptane                          | 8.5                  | Not Detected                      | 35                    | Not Detected      |
| Trichloroethene                  | 8.5                  | Not Detected                      | 46                    | Not Detected      |
| 1,2-Dichloropropane              | 8.5                  | Not Detected                      | 39                    | Not Detected      |
| 1,4-Dioxane                      | 34                   | Not Detected                      | 120                   | Not Detected      |
| Bromodichloromethane             | 8.5                  | Not Detected                      | 57                    | Not Detected      |
| cis-1,3-Dichloropropene          | 8.5                  | Not Detected                      | 38                    | Not Detected      |
| 4-Methyl-2-pentanone             | 8.5                  | Not Detected                      | 35                    | Not Detected      |
| Toluene                          | 8.5                  |                                   |                       | 30 J              |
| trans-1,3-Dichloropropene        | 8.5                  | 8.0 J<br>Not Detected             |                       | Not Detected      |
| 1,1,2-Trichloroethane            | 8.5                  | Not Detected                      |                       | Not Detected      |
| Tetrachloroethene                | 8.5                  | 1 (5)                             | el Infantes           | Not Detected      |
| 2-Hexanone                       | 34                   |                                   | léndez 1465           | Not Detected      |



# Client Sample ID: B30-4DSSV013116 Lab ID#: 1602064B-14A

# **EPA METHOD TO-15 GC/MS FULL SCAN**

| File Name:<br>Dil. Factor: | p020814<br>17.0      | Date of Collection: 1/31/16 1:20:00  Date of Analysis: 2/8/16 05:18 PM |                       |                   |
|----------------------------|----------------------|------------------------------------------------------------------------|-----------------------|-------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount (ppbv)                                                          | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| Dibromochloromethane       | 8.5                  | Not Detected                                                           | 72                    | Not Detected      |
| 1,2-Dibromoethane (EDB)    | 8.5                  | Not Detected                                                           | 65                    | Not Detected      |
| Chlorobenzene              | 8.5                  | Not Detected                                                           | 39                    | Not Detected      |
| Ethyl Benzene              | 8.5                  | 3.8 J                                                                  | 37                    | 16 J              |
| m,p-Xylene                 | 8.5                  | 11                                                                     | 37                    | 47                |
| o-Xylene                   | 8.5                  | 4.9 J                                                                  | 37                    | 21 J              |
| Styrene                    | 8.5                  | 1.4 J                                                                  | 36                    | 6.2 J             |
| Bromoform                  | 8.5                  | Not Detected                                                           | 88                    | Not Detected      |
| Cumene                     | 8.5                  | Not Detected                                                           | 42                    | Not Detected      |
| 1,1,2,2-Tetrachloroethane  | 8.5                  | <b>Not Detected</b>                                                    | 58                    | Not Detected      |
| Propylbenzene              | 8.5                  | Not Detected                                                           | 42                    | Not Detected      |
| 4-Ethyltoluene             | 8.5                  | 2.1 J                                                                  | 42                    | 10 J              |
| 1,3,5-Trimethylbenzene     | 8.5                  | Not Detected                                                           | 42                    | Not Detected      |
| 1,2,4-Trimethylbenzene     | 8.5                  | Not Detected                                                           | 42                    | Not Detected      |
| 1,3-Dichlorobenzene        | 8.5                  | 8.0 J                                                                  | 51                    | 48 J              |
| 1,4-Dichlorobenzene        | 8,5                  | Not Detected                                                           | 51                    | Not Detected      |
| alpha-Chlorotoluene        | 8.5                  | <b>Not Detected</b>                                                    | 44                    | Not Detected      |
| 1,2-Dichlorobenzene        | 8.5                  | Not Detected                                                           | 51                    | Not Detected      |
| 1,2,4-Trichlorobenzene     | 34                   | Not Detected                                                           | 250                   | Not Detected      |
| Hexachlorobutadiene        | 34                   | Not Detected                                                           | 360                   | Not Detected      |
| Naphthalene                | 17                   | Not Detected                                                           | 89                    | Not Detected      |

J = Estimated value.

Container Type: 1 Liter Summa Canister

| Surrogates            | %Recovery | Method<br>Limits |
|-----------------------|-----------|------------------|
| Toluene-d8            | 97        | 70-130           |
| 1,2-Dichloroethane-d4 | 96        | 70-130           |
| 4-Bromofluorobenzene  | 96        | 70-130           |





# Client Sample ID: B30-5SSV013116 Lab ID#: 1602064B-15A

# EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor:                      | p020813<br>2.15      | Date of Collection: 1/31<br>Date of Analysis: 2/8/16 |                       |                   |  |
|-------------------------------------------------|----------------------|------------------------------------------------------|-----------------------|-------------------|--|
| Compound                                        | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv)                                     | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |  |
| Freon 12                                        | 1.1                  | 0,58 J                                               | 5.3                   | 2,8 J             |  |
| Freon 114                                       | 1.1                  | Not Detected                                         | 7.5                   | Not Detected      |  |
| Chloromethane                                   | 11                   | Not Detected                                         | 22                    | Not Detected      |  |
| Vinyl Chloride                                  | 1.1                  | Not Detected                                         | 2.7                   | Not Detected      |  |
| 1,3-Butadiene                                   | 1.1                  | Not Detected                                         | 2.4                   | Not Detected      |  |
| Bromomethane                                    | 11                   | Not Detected                                         | 42                    | Not Detected      |  |
| Chloroethane                                    | 4.3                  | Not Detected                                         | 11                    | Not Detected      |  |
| Freon 11                                        | 1.1                  | 0.25 J                                               | 6.0                   | 1.4 J             |  |
| Ethanol                                         | 4.3                  | 25                                                   | 8.1                   | 48                |  |
| Freon 113                                       | 1.1                  | Not Detected                                         | 8.2                   | Not Detected      |  |
| 1,1-Dichloroethene                              | 1,1                  | Not Detected                                         | 4.3                   | Not Detected      |  |
| Acetone                                         | 11                   | 7.4 J                                                | 26                    | 18 J              |  |
| 2-Propanol                                      | 4.3                  | 25                                                   | 10                    | 61                |  |
| Carbon Disulfide                                | 4.3                  | 0.86 J                                               | 13                    | 2.7 J             |  |
| 3-Chloropropene                                 | 4.3                  | Not Detected                                         | 13                    | Not Detected      |  |
| Methylene Chloride                              | 11                   | Not Detected                                         | 37                    | Not Detected      |  |
| Methyl tert-butyl ether                         | 1.1                  | Not Detected                                         | 3.9                   | Not Detected      |  |
| rans-1,2-Dichloroethene                         | 1.1                  | Not Detected                                         | 4.3                   | Not Detected      |  |
| Hexane                                          | 1,1                  | Not Detected                                         | 3.8                   | Not Detected      |  |
| 1,1-Dichloroethane                              | 1.1                  | Not Detected                                         | 4.4                   | Not Detected      |  |
| 2-Butanone (Methyl Ethyl Ketone)                | 4.3                  | 1.3 J                                                | 13                    | 3,8 J             |  |
| cis-1,2-Dichloroethene                          | 1.1                  | Not Detected                                         | 4.3                   | Not Detected      |  |
| Tetrahydrofuran                                 | 1.1                  | Not Detected                                         | 3.2                   | Not Detected      |  |
| Chloroform                                      | 1.1                  | Not Detected                                         | 5.2                   | Not Detected      |  |
| 1,1,1-Trichloroethane                           | 1.1                  | Not Detected                                         | 5.9                   | Not Detected      |  |
| Cyclohexane                                     | 1.1                  | 0.50 J                                               | 3.7                   | 1.7 J             |  |
| Carbon Tetrachloride                            | 1.1                  | Not Detected                                         | 6.8                   | Not Detected      |  |
| 2,2,4-Trimethylpentane                          | 1.1                  | 0.22 J                                               | 5.0                   | 1.0 J             |  |
| Benzene                                         | 1.1                  | Not Detected                                         | 3.4                   | Not Detected      |  |
| 1,2-Dichloroethane                              | 1.1                  | Not Detected                                         | 4.4                   | Not Detected      |  |
| Heptane                                         | 1.1                  | 0.68 J                                               | 4.4                   | 2.8 J             |  |
| Frichlorgethene                                 | 1.1                  | Not Detected                                         | 5,8                   | Not Detected      |  |
| 1,2-Dichloropropane                             | 1.1                  | Not Detected                                         | 5.0                   | Not Detected      |  |
| 1,4-Dioxane                                     | 4.3                  | 0.84 J                                               | 15                    | 3.0 J             |  |
| Bromodichloromethane                            | 1.1                  | Not Detected                                         | 7.2                   | Not Detected      |  |
| cis-1,3-Dichloropropene                         | 1.1                  | Not Detected                                         | 4.9                   | Not Detected      |  |
| 4-Methyl-2-pentanone                            | 1.1                  | Not Detected                                         | 4.4                   | Not Detected      |  |
| Toluene                                         | 1.1                  | 0.90.1                                               | CIADO A SAO           | 3.4 J             |  |
| rans-1,3-Dichloropropene                        | 1.1                  | 0.90 J<br>Not Detected                               |                       | Not Detected      |  |
| 1,1,2-Trichloroethane                           | 1.1                  | Not Detected                                         |                       | Not Detected      |  |
| Fetrachloroethene                               | 1.1                  | Not Detected                                         | i Infante \           | Not Detected      |  |
| 1 6 8 8 6 1 1 1 1 1 1 C 1 1 C 1 C 1 C 1 C 1 C 1 | L. I                 | MOLDETECTED **                                       | éndez (文字)            | IAOT DETERME      |  |

0074 of 0605



# Client Sample ID: B30-5SSV013116 Lab ID#: 1602064B-15A

# **EPA METHOD TO-15 GC/MS FULL SCAN**

File Name: p020813 Date of Collection: 1/31/16 1:49:00 PM Dil. Factor: 2.15 Date of Analysis: 2/8/16 04:54 PM

|                           | 2.10                 | 2.10 Date of Allerysts. 20110 04.041 III |                       |                   |
|---------------------------|----------------------|------------------------------------------|-----------------------|-------------------|
| Compound                  | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv)                         | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| Dibromochloromethane      | 1.1                  | Not Detected                             | 9.2                   | Not Detected      |
| 1,2-Dibromoethane (EDB)   | 1.1                  | Not Detected                             | 8.3                   | Not Detected      |
| Chlorobenzene             | 1.1                  | Not Detected                             | 4.9                   | Not Detected      |
| Ethyl Benzene             | 1.1                  | Not Detected                             | 4.7                   | Not Detected      |
| m,p-Xylene                | 1.1                  | 0.33 J                                   | 4.7                   | 1.4 J             |
| o-Xylene                  | 1.1                  | Not Detected                             | 4.7                   | Not Detected      |
| Styrene                   | 1.1                  | Not Detected                             | 4.6                   | Not Detected      |
| Bromoform                 | 1.1                  | Not Detected                             | 11                    | Not Detected      |
| Cumene                    | 1.1                  | Not Detected                             | 5.3                   | Not Detected      |
| 1,1,2,2-Tetrachloroethane | 1.1                  | Not Detected                             | 7.4                   | Not Detected      |
| Propylbenzene             | 1.1                  | Not Detected                             | 5.3                   | Not Detected      |
| 4-Ethyltoluene            | 1.1                  | Not Detected                             | 5.3                   | Not Detected      |
| 1,3,5-Trimethylbenzene    | 1.1                  | Not Detected                             | 5.3                   | Not Detected      |
| 1,2,4-Trimethylbenzene    | 1.1                  | Not Detected                             | 5.3                   | Not Detected      |
| 1,3-Dichlorobenzene       | 1.1                  | Not Detected                             | 6.5                   | Not Detected      |
| 1,4-Dichlorobenzene       | 1.1                  | Not Detected                             | 6.5                   | Not Detected      |
| alpha-Chlorotoluene       | 1.1                  | Not Detected                             | 5.6                   | Not Detected      |
| 1,2-Dichtorobenzene       | 1.1                  | Not Detected                             | 6.5                   | Not Detected      |
| 1,2,4-Trichlorobenzene    | 4.3                  | Not Detected                             | 32                    | Not Detected      |
| Hexachlorobutadiene       | 4.3                  | Not Detected                             | 46                    | Not Detected      |
| Naphthalene               | 2.2                  | Not Detected                             | 11                    | Not Detected      |

J = Estimated value.

Container Type: 1 Liter Summa Canister

| Surrogates            | %Recovery | Method<br>Limits |
|-----------------------|-----------|------------------|
| Toluene-d8            | 100       | 70-130           |
| 1,2-Dichloroethane-d4 | 97        | 70-130           |
| 4-Bromofluorobenzene  | 94        | 70-130           |





# Client Sample ID: B42-1SSV013116

# Lab ID#: 1602064B-16A

| File Name:<br>Dil. Factor:          | p020812<br>9.48      | Date of Collection: 1/31/16 4:40:00 PM<br>Date of Analysis: 2/8/16 04:28 PM |                       |                   |
|-------------------------------------|----------------------|-----------------------------------------------------------------------------|-----------------------|-------------------|
| Compound                            | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv)                                                            | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| Freon 12                            | 4.7                  | Not Detected                                                                | 23                    | Not Detected      |
| Freon 114                           | 4.7                  | Not Detected                                                                | 33                    | Not Detected      |
| Chloromethane                       | 47                   | Not Detected                                                                | 98                    | Not Detected      |
| Vinyl Chloride                      | 4.7                  | Not Detected                                                                | 12                    | Not Detected      |
| 1,3-Butadiene                       | 4.7                  | Not Detected                                                                | 10                    | Not Detected      |
| Bromomethane                        | 47                   | Not Detected                                                                | 180                   | Not Detected      |
| Chloroethane                        | 19                   | Not Detected                                                                | 50                    | Not Detected      |
| Freon 11                            | 4.7                  | Not Detected                                                                | 27                    | Not Detected      |
| Ethanol                             | 19                   | 680                                                                         | 36                    | 1300              |
| Freon 113                           | 4.7                  | Not Detected                                                                | 36                    | Not Detected      |
| 1,1-Dichloroethene                  | 4,7                  | Not Detected                                                                | 19                    | Not Detected      |
| Acetone                             | 47                   | 35 J                                                                        | 110                   | 84 J              |
| 2-Propanol                          | 19                   | 960                                                                         | 46                    | 2400              |
| Carbon Disulfide                    | 19                   | Not Detected                                                                | 59                    | Not Detected      |
| 3-Chloropropene                     | 19                   | Not Detected                                                                | 59                    | Not Detected      |
| Methylene Chloride                  | 47                   | Not Detected                                                                | 160                   | Not Detected      |
| Methyl tert-butyl ether             | 4.7                  | Not Detected                                                                | 17                    | Not Detected      |
| trans-1,2-Dichloroethene            | 4.7                  | Not Detected                                                                | 19                    | Not Detected      |
| Hexane                              | 4.7                  | Not Detected                                                                | 17                    | Not Detected      |
| 1,1-Dichloroethane                  | 4.7                  | Not Detected                                                                | 19                    | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone)    | 19                   | 11 J                                                                        | 56                    | 33 J              |
| cis-1,2-Dichloroethene              | 4.7                  | Not Detected                                                                | 19                    | Not Detected      |
| Tetrahydrofuran                     | 4.7                  | Not Detected                                                                | 14                    | Not Detected      |
| Chloroform                          | 4.7                  | Not Detected                                                                | 23                    | Not Detected      |
| 1,1,1-Trichloroethane               | 4.7                  | Not Detected                                                                | 26                    | Not Detected      |
| Cyclohexane                         | 4.7                  | Not Detected                                                                | 16                    | Not Detected      |
| Carbon Tetrachloride                | 4.7                  | Not Detected                                                                | 30                    | Not Detected      |
| 2,2,4-Trimethylpentane              | 4.7                  | 1.1 J                                                                       | 22                    | 5.1 J             |
| Benzene                             | 4.7                  | 1,9 J                                                                       | 15                    | 6.0 J             |
| 1,2-Dichloroethane                  | 4.7                  | Not Detected                                                                | 19                    | Not Detected      |
| Heptane                             | 4.7                  | Not Detected                                                                | 19                    | Not Detected      |
| rreptane<br>Trichloroethene         | 4.7                  | Not Detected                                                                | 25                    | Not Detected      |
| 1,2-Dichloropropane                 | 4.7                  | Not Detected                                                                | 22                    | Not Detected      |
| 1,4-Dioxane                         | 19                   | Not Detected                                                                | 68                    | Not Detected      |
| r,4-Dioxane<br>Bromodichloromethane | 4.7                  | Not Detected                                                                | 32                    | Not Detected      |
|                                     | 4.7                  | Not Detected                                                                | 32                    | Not Detected      |
| cis-1,3-Dichloropropene             | 4.7                  | Not Detected                                                                | NE MOCHOO OF ALL      | Not Detected      |
| 4-Methyl-2-pentanone                | 4.7<br>4.7           | Not Detected<br>3.4 J                                                       | 18                    | 13 J              |
| Foluene                             | 4.7<br>4.7           | 100                                                                         |                       | Not Detected      |
| trans-1,3-Dichloropropene           |                      | Not Detected                                                                |                       |                   |
| 1,1,2-Trichloroethane               | 4.7                  | Not Detected                                                                | Mérifiez              | Not Detected      |
| Tetrachloroethene                   | 4.7                  | Not Detected                                                                | 32888                 | Not Detected      |

Page 1

0096 of 0605



# Client Sample ID: B42-1SSV013116

Lab ID#: 1602064B-16A

# EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor: | p020812<br>9.48      | Date of Collection: 1/31/16 4 Date of Analysis: 2/8/16 04: |                       |                   |
|----------------------------|----------------------|------------------------------------------------------------|-----------------------|-------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount (ppbv)                                              | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| Dibromochloromethane       | 4.7                  | Not Detected                                               | 40                    | Not Detected      |
| 1,2-Dibromoethane (EDB)    | 4.7                  | Not Detected                                               | 36                    | Not Detected      |
| Chlorobenzene              | 4.7                  | Not Detected                                               | 22                    | Not Detected      |
| Ethyl Benzene              | 4.7                  | 2,6 J                                                      | 20                    | 11 J              |
| m,p-Xylene                 | 4.7                  | 5.1                                                        | 20                    | 22                |
| o-Xylene                   | 4.7                  | 2.8 J                                                      | 20                    | 12 J              |
| Styrene                    | 4.7                  | 0.90 J                                                     | 20                    | 3.8 J             |
| Bromoform                  | 4.7                  | <b>Not Detected</b>                                        | 49                    | Not Detected      |
| Cumene                     | 4.7                  | Not Detected                                               | 23                    | Not Detected      |
| 1,1,2,2-Tetrachloroethane  | 4.7                  | Not Detected                                               | 32                    | Not Detected      |
| Propylbenzene              | 4.7                  | 0.70 J                                                     | 23                    | 3.4 J             |
| 4-Ethyltoluene             | 4.7                  | 1,3 J                                                      | 23                    | 6.5 J             |
| 1,3,5-Trimethylbenzene     | 4.7                  | Not Detected                                               | 23                    | Not Detected      |
| 1,2,4-Trimethylbenzene     | 4.7                  | Not Detected                                               | 23                    | Not Detected      |
| 1,3-Dichlorobenzene        | 4.7                  | 7.7                                                        | 28                    | 46                |
| 1,4-Dichlorobenzene        | 4.7                  | Not Detected                                               | 28                    | Not Detected      |
| alpha-Chlorotoluene        | 4.7                  | Not Detected                                               | 24                    | Not Detected      |
| 1,2-Dichlorobenzene        | 4.7                  | Not Detected                                               | 28                    | Not Detected      |
| 1,2,4-Trichlorobenzene     | 19                   | Not Detected                                               | 140                   | Not Detected      |
| Hexachlorobutadiene        | 19                   | Not Detected                                               | 200                   | Not Detected      |
| Naphthalene                | 9.5                  | Not Detected                                               | 50                    | Not Detected      |

J = Estimated value.

Container Type: 1 Liter Summa Canister

| Surrogates            | %Recovery | Limits |
|-----------------------|-----------|--------|
| Toluene-d8            | 100       | 70-130 |
| 1,2-Dichloroethane-d4 | 96        | 70-130 |
| 4-Bromofluorobenzene  | 95        | 70-130 |





# Client Sample ID: B42-2SSV013116 Lab ID#: 1602064B-17A

### **EPA METHOD TO-15 GC/MS FULL SCAN**

| File Name:<br>Dil. Factor:       | p020811<br>2.26      | Date of Collection: 1/31/16 4:06 Date of Analysis: 2/8/16 04:04 P |                       |                              |
|----------------------------------|----------------------|-------------------------------------------------------------------|-----------------------|------------------------------|
| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv)                                                  | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3)            |
| Freon 12                         | 1.1                  | 0.60 J                                                            | 5.6                   | 3.0 J                        |
| Freon 114                        | 1.1                  | Not Detected                                                      | 7.9                   | Not Detected                 |
| Chloromethane                    | 11                   | Not Detected                                                      | 23                    | Not Detected                 |
| Vinyl Chloride                   | 1.1                  | Not Detected                                                      | 2.9                   | Not Detected                 |
| 1,3-Butadiene                    | 1.1                  | Not Detected                                                      | 2.5                   | Not Detected                 |
| Bromomethane                     | 11                   | Not Detected                                                      | 44                    | Not Detected                 |
| Chloroethane                     | 4.5                  | Not Detected                                                      | 12                    | Not Detected                 |
| Freon 11                         | 1.1                  | Not Detected                                                      | 6.3                   | Not Detected                 |
| Ethanol                          | 4.5                  | 50                                                                | 8.5                   | 94                           |
| Freon 113                        | 1.1                  | Not Detected                                                      | 8.7                   | Not Detected                 |
| 1,1-Dichloroethene               | 1.1                  | Not Detected                                                      | 4.5                   | Not Detected                 |
| Acetone                          | 11                   | 9,3 J                                                             | 27                    | 22 J                         |
| 2-Propanol                       | 4.5                  | 4.9                                                               | 11                    | 12                           |
| Carbon Disulfide                 | 4.5                  | 1,2 J                                                             | 14                    | 3.6 J                        |
| 3-Chloropropene                  | 4.5                  | Not Detected                                                      | 14                    | Not Detected                 |
| Methylene Chloride               | 11                   | Not Detected                                                      | 39                    | Not Detected                 |
| Methyl tert-butyl ether          | 1.1                  | Not Detected                                                      | 4.1                   | Not Detected                 |
| trans-1,2-Dichloroethene         | 1.1                  | Not Detected                                                      | 4.5                   | Not Detected                 |
| Hexane                           | 1.1                  | Not Detected                                                      | 4.0                   | Not Detected                 |
| 1,1-Dichloroethane               |                      | Not Detected                                                      | 4.6                   | Not Detected                 |
| 2-Butanone (Methyl Ethyl Ketone) | 4.5                  | 1.3 J                                                             | 13                    | 3.9 J                        |
| cis-1,2-Dichloroethene           | 1.1                  | Not Detected                                                      | 4.5                   | Not Detected                 |
| Tetrahydrofuran                  | 1.1                  | 3.9                                                               | 3.3                   | 12                           |
| Chloroform                       | 1.1                  | Not Detected                                                      | 5.5                   | Not Detected                 |
| 1,1,1-Trichloroethane            | 1.1                  | Not Detected                                                      | 6.2                   | Not Detected                 |
| Cyclohexane                      | 1.1                  | Not Detected                                                      | 3.9                   | Not Detected                 |
| Carbon Tetrachloride             | 1.1                  | Not Detected                                                      | 7.1                   | Not Detected                 |
|                                  | 1.1                  | Not Detected                                                      | 5.3                   | Not Detected                 |
| 2,2,4-Trimethylpentane Benzene   | 1.1                  | Not Detected                                                      | 3.6                   | Not Detected                 |
| 1,2-Dichloroethane               | 1.1                  | Not Detected                                                      | 4.6                   | Not Detected                 |
|                                  |                      | 0.73 J                                                            | 4.6                   | 3.0 J                        |
| Heptane<br>Trickleresthere       | 1.1<br>1.1           |                                                                   |                       |                              |
| Trichloroethene                  | 1.1                  | Not Detected                                                      | 6.1                   | Not Detected                 |
| 1,2-Dichloropropane              | 4.5                  | Not Detected                                                      | 5.2<br>16             | Not Detected                 |
| 1,4-Dioxane Bromodichloromethane | 4.5<br>1.1           | Not Detected<br>Not Detected                                      | 7.6                   | Not Detected<br>Not Detected |
|                                  |                      |                                                                   |                       |                              |
| cis-1,3-Dichloropropene          | 1.1                  | Not Detected                                                      | 5.1                   | Not Detected                 |
| 4-Methyl-2-pentanone             | 1.1                  | Not Detected                                                      | OCHOO                 | Not Detected                 |
| Toluene                          | 1.1                  | 0.37 J                                                            |                       | 1.4 J                        |
| trans-1,3-Dichloropropene        | 1.1                  | Not Detected                                                      | 0.                    | Not Detected                 |
| 1,1,2-Trichloroethane            | 1.1                  |                                                                   | tael infante          | Not Detected                 |
| Tetrachloroethene                | 1.1                  | Not Detected                                                      | Mendez 7.7            | Not Detected                 |
| 2-Hexanone                       | 4.5                  | Not Detected                                                      | IC = 18888            | Not Detected                 |

Page 1

0119 of 0605



# Client Sample ID: B42-2SSV013116 Lab ID#: 1602064B-17A

# EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor: | p020811<br>2.26      | Date of Collection: 1/31/16 4:06:00 PM Date of Analysis: 2/8/16 04:04 PM |                       |                   |
|----------------------------|----------------------|--------------------------------------------------------------------------|-----------------------|-------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount (ppbv)                                                            | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| Dibromochloromethane       | 1.1                  | Not Detected                                                             | 9.6                   | Not Detected      |
| 1,2-Dibromoethane (EDB)    | 1.1                  | Not Detected                                                             | 8.7                   | Not Detected      |
| Chlorobenzene              | 1.1                  | Not Detected                                                             | 5.2                   | Not Detected      |
| Ethyl Benzene              | 1.1                  | Not Detected                                                             | 4.9                   | Not Detected      |
| m,p-Xylene                 | 1.1                  | Not Detected                                                             | 4.9                   | Not Detected      |
| o-Xylene                   | 1.1                  | Not Detected                                                             | 4.9                   | Not Detected      |
| Styrene                    | 1.1                  | Not Detected                                                             | 4.8                   | Not Detected      |
| Bromoform                  | 1.1                  | Not Detected                                                             | 12                    | Not Detected      |
| Cumene                     | 1.1                  | Not Detected                                                             | 5.6                   | Not Detected      |
| 1,1,2,2-Tetrachloroethane  | 1.1                  | Not Detected                                                             | 7.8                   | Not Detected      |
| Propylbenzene              | 1,1                  | Not Detected                                                             | 5.6                   | Not Detected      |
| 4-Ethyltoluene             | 1.1                  | Not Detected                                                             | 5.6                   | Not Detected      |
| 1,3,5-Trimethylbenzene     | 1.1                  | Not Detected                                                             | 5.6                   | Not Detected      |
| 1,2,4-Trimethylbenzene     | 1.1                  | Not Detected                                                             | 5,6                   | Not Detected      |
| 1,3-Dichlorobenzene        | 1.1                  | Not Detected                                                             | 6.8                   | Not Detected      |
| 1,4-Dichlorobenzene        | 1.1                  | Not Detected                                                             | 6.8                   | Not Detected      |
| alpha-Chlorotoluene        | 1.1                  | Not Detected                                                             | 5.8                   | Not Detected      |
| 1,2-Dichtorobenzene        | 1.1                  | Not Detected                                                             | 6.8                   | Not Detected      |
| 1,2,4-Trichlorobenzene     | 4.5                  | Not Detected                                                             | 34                    | Not Detected      |
| Hexachlorobutadiene        | 4.5                  | Not Detected                                                             | 48                    | Not Detected      |
| Naphthalene                | 2.3                  | Not Detected                                                             | 12                    | Not Detected      |

J = Estimated value

Container Type: 1 Liter Summa Canister

| Surrogates            | %Recovery | Method<br>Limits |
|-----------------------|-----------|------------------|
| Toluene-d8            | 98        | 70-130           |
| 1,2-Dichloroethane-d4 | 96        | 70-130           |
| 4-Bromofluorobenzene  | 94        | 70-130           |





# Client Sample ID: B42-3SSV013116 Lab ID#: 1602064B-18A

### **EPA METHOD TO-15 GC/MS FULL SCAN**

| File Name:<br>Dil. Factor:        | p020810<br>2.27      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date of Collection: 1/31/16 4:24:00 PM Date of Analysis: 2/8/16 03:37 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |  |
|-----------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| Compound                          | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rpt. Limit<br>(ug/m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amount<br>(ug/m3) |  |
| Freon 12                          | 1,1                  | 0,61 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0 J             |  |
| Freon 114                         | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| Chloromethane                     | 11                   | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not Detected      |  |
| Vinyl Chloride                    | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| 1,3-Butadiene                     | 1,1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| Bromomethane                      | 11                   | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not Detected      |  |
| Chloroethane                      | 4.5                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not Detected      |  |
| Freon 11                          | 1.1                  | 0.25 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4 J             |  |
| Ethanol                           | 4.5                  | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 290               |  |
| Freon 113                         | 1,1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| 1,1-Dichloroethene                | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| Acetone                           | 11                   | 8.3 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 J              |  |
| 2-Propanol                        | 4.5                  | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 290               |  |
| Carbon Disulfide                  | 4.5                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not Detected      |  |
| 3-Chloropropene                   | 4.5                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not Detected      |  |
| Methylene Chloride                | 11                   | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not Detected      |  |
| Methyl tert-butyl ether           | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| trans-1,2-Dichloroethene          | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| Hexane                            | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| 1,1-Dichloroethane                | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| 2-Butanone (Methyl Ethyl Ketone)  | 4.5                  | 2.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.3 J             |  |
| cis-1,2-Dichloroethene            | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| Tetrahydrofuran                   | 1.1                  | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.9               |  |
| Chloroform                        | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| 1,1,1-Trichloroethane             | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| Cyclohexane                       | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| Carbon Tetrachloride              | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
|                                   | 1.1                  | 0.22 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 J             |  |
| 2,2,4-Trimethylpentane<br>Benzene | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| 1,2-Dichloroethane                | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
|                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5 J             |  |
| Heptane                           | 1.1                  | 0.61 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |  |
| Trichloroethene                   | 1.1                  | Not Detected<br>Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| 1,2-Dichloropropane               | 1.1<br>4.5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| 1,4-Dioxane Bromodichloromethane  | 4.5<br>1.1           | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16<br>7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not Detected      |  |
|                                   |                      | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| cis-1,3-Dichloropropene           | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| 4-Methyl-2-pentanone              | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOCIADO DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Detected      |  |
| Toluene                           | 1.1                  | 0.74 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The state of the s | 2.8 J             |  |
| trans-1,3-Dichloropropene         | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected      |  |
| 1,1,2-Trichloroethane             | 1.1                  | The second secon | tuel Infante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Not Detected      |  |
| Tetrachloroethene                 | 1.1                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mendez7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not Detected      |  |
| 2-Hexanone                        | 4.5                  | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IC = 188/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Detected      |  |

Page 1

0137 of 0605



# Client Sample ID: B42-3SSV013116 Lab ID#: 1602064B-18A

# EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor: | p020810<br>2.27      | Date of Collection: 1/31/16 4:24:00 PM Date of Analysis: 2/8/16 03:37 PM |                       |                   |  |
|----------------------------|----------------------|--------------------------------------------------------------------------|-----------------------|-------------------|--|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv)                                                         | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |  |
| Dibromochloromethane       | 1.1                  | Not Detected                                                             | 9.7                   | Not Detected      |  |
| 1,2-Dibromoethane (EDB)    | 1.1                  | Not Detected                                                             | 8.7                   | Not Detected      |  |
| Chlorobenzene              | 1.1                  | Not Detected                                                             | 5.2                   | Not Detected      |  |
| Ethyl Benzene              | 1.1                  | Not Detected                                                             | 4.9                   | Not Detected      |  |
| m,p-Xylene                 | 1.1                  | 0.67 J                                                                   | 4.9                   | 2.9 J             |  |
| o-Xylene                   | 1.1                  | 0.29 J                                                                   | 4.9                   | 1.2 J             |  |
| Styrene                    | 1.1                  | Not Detected                                                             | 4.8                   | Not Detected      |  |
| Bromoform                  | 1.1                  | Not Detected                                                             | 12                    | Not Detected      |  |
| Cumene                     | 1.1                  | Not Detected                                                             | 5.6                   | Not Detected      |  |
| 1,1,2,2-Tetrachloroethane  | 1.1                  | Not Detected                                                             | 7.8                   | Not Detected      |  |
| Propylbenzene              | 1.1                  | Not Detected                                                             | 5.6                   | Not Detected      |  |
| 4-Ethyltoluene             | 1.1                  | Not Detected                                                             | 5.6                   | Not Detected      |  |
| 1,3,5-Trimethylbenzene     | 1.1                  | Not Detected                                                             | 5.6                   | Not Detected      |  |
| 1,2,4-Trimethylbenzene     | 1.1                  | Not Detected                                                             | 5.6                   | Not Detected      |  |
| 1,3-Dichlorobenzene        | 1.1                  | 0.64 J                                                                   | 6.8                   | 3.8 J             |  |
| 1,4-Dichlorobenzene        | 1.1                  | Not Detected                                                             | 6.8                   | Not Detected      |  |
| alpha-Chlorotoluene        | 1.1                  | Not Detected                                                             | 5.9                   | Not Detected      |  |
| 1,2-Dichlorobenzene        | 1.1                  | Not Detected                                                             | 6.8                   | Not Detected      |  |
| 1,2,4-Trichlorobenzene     | 4.5                  | Not Detected                                                             | 34                    | Not Detected      |  |
| Hexachlorobutadiene        | 4.5                  | Not Detected                                                             | 48                    | Not Detected      |  |
| Naphthalene                | 2.3                  | Not Detected                                                             | 12                    | Not Detected      |  |

J = Estimated value:

Container Type: 1 Liter Summa Canister

| Surrogates            | %Recovery | Method<br>Limits |
|-----------------------|-----------|------------------|
| Toluene-d8            | 100       | 70-130           |
| 1,2-Dichloroethane-d4 | 95        | 70-130           |
| 4-Bromofluorobenzene  | 95        | 70-130           |
| 6.                    |           | duel Infante   6 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project Number:1602064B                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date:01/31/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| REVIEW OF VOLATILE ORGATHE following guidelines for evaluating volatile organics was actions. This document will assist the reviewer in using prodecision and in better serving the needs of the data users. The USEPA data validation guidance documents in the follow "Compendium Method TO-15. Determination of Volatile Org Specially-Prepared Canisters and Analyzed By Gas Children January, 1999"; USEPA Hazardous Waste Support Branc Analysis of Ambient Air in Canisters by Method TO-15, (SOP QC criteria and data validation actions listed on the data reviet document, unless otherwise noted.  The hardcopied (laboratory name) _EurofinsAir_Toxicsreviewed and the quality control and performance data summare. | ere created to delineate required validation of processional judgment to make more informed the sample results were assessed according to sample results were assessed according to sample order of precedence: QC criteria from anic Compounds (VOCs) In Air Collected Informatography/Mass Spectrometry (GC/MS), h. Validating Air Samples. Volatile Organic # HW-31. Revision #4. October, 2006). The saw worksheets are from the primary guidance data package received has been |
| Lab. Project/SDG No.:1602064B<br>No. of Samples:8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample matrix:Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Trip blank No.: Field blank No.: Equipment blank No.: Field duplicate No.:  X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesN/A Matrix Spike/Matrix Spike Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Overall Comments:_VOCs_by_method_TO-15_(full suite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Definition of Qualifiers:  J- Estimated results  U- Compound not detected  R- Rejected data  UJ- Estimated nondetect  Reviewer:  Date: 02/27/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# DATA COMPLETENESS

| MISSING INFORMATION | SING INFORMATION DATE LAB. CONTACTED |             |
|---------------------|--------------------------------------|-------------|
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     | <u> </u>                             | <del></del> |
|                     |                                      |             |
|                     | <b>N</b>                             |             |
|                     |                                      |             |
|                     |                                      |             |
|                     | - 1                                  |             |
|                     |                                      |             |
|                     |                                      |             |
|                     | <u> </u>                             |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
| <u> </u>            |                                      |             |
| <u> </u>            |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
| ·                   |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     |                                      |             |
|                     | 3 000                                |             |

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

### **HOLDING TIMES**

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

| SAMPLE ID | DATE SAMPLED           | DATE ANALYZED              | pН           | ACTION       |
|-----------|------------------------|----------------------------|--------------|--------------|
|           |                        |                            |              |              |
|           | All samples analyzed w | <br>vithin the recommended | <br>  method | holding time |
|           |                        |                            |              |              |
|           |                        |                            | -            |              |
|           |                        |                            |              |              |
|           |                        |                            |              |              |
|           |                        |                            |              |              |
|           |                        |                            |              |              |

# Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH  $\leq$  2, 4°C), no air bubbles.

Aqueous samples -7 days from sample collection for unpreserved samples,  $4^{\circ}$ C, no air bubbles. Soil samples -7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): N/A – summa canisters

### Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

|                                           |                                       | Crite                            | All criteria were metX<br>ria were not met see below |
|-------------------------------------------|---------------------------------------|----------------------------------|------------------------------------------------------|
| GC/MS TUNING                              |                                       |                                  |                                                      |
| The assessment<br>standard tuning C       | _                                     | determine if the sample instrun  | nentation is within the                              |
| XThe BFB                                  | performance results were re           | eviewed and found to be within t | the specified criteria.                              |
| X BFB tunir                               | g was performed for every             | 24 hours of sample analysis.     |                                                      |
| If no, use profest<br>qualified or reject |                                       | ne whether the associated data   | a should be accepted,                                |
| List                                      | the                                   | samples                          | affected:                                            |
|                                           | · · · · · · · · · · · · · · · · · · · |                                  |                                                      |

If mass calibration is in error, all associated data are rejected.

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowX     |

### CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

| Date of initial calibration:  | 02/      | 12/16_  | ·        |
|-------------------------------|----------|---------|----------|
| Dates of continuing calibrati | on:02/1  | 2/16;_( | )2/15/16 |
| Instrument ID numbers:        | MSD-14_  |         |          |
| Matrix/Level:                 | Air/low_ |         |          |

| DATE           | LAB FILE ID#        | CRITERIA OUT<br>RFs, %RSD, %D, r | COMPOUND                   | SAMPLES<br>AFFECTED |
|----------------|---------------------|----------------------------------|----------------------------|---------------------|
| Initial and co | ntinuing calibratio |                                  | ormance criteria except f  | or the following:   |
| 02/15/2016     | 1602064B-20B        | 33 %                             | 1,2,4-<br>Trichlorobenzene | 1602064B-11A        |
|                |                     |                                  |                            |                     |

Note: Sample results qualified as estimated (J) in affected samples.

### Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be < 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of  $\geq$  0.995 has therefore been utilized as professional judgment.

### **Actions**

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

# V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

| DATE<br>ANALYZED  | LABID          | LEVEL/<br>MATRIX | COMPOUND           | CONCENTRATION/<br>UNITS      |
|-------------------|----------------|------------------|--------------------|------------------------------|
| _action_level_fo  | r_blanks       |                  |                    | _above_the_reporting_limit/_ |
|                   | nisters_met_cl |                  | ation_criteria     |                              |
| DATE<br>Analyzed  | LAB ID         | LEVEL/<br>MATRIX | COMPOUND           | CONCENTRATION UNITS          |
| No_field/trip/equ | ipment_blanks  | _analyzed_with   | _this_data_package |                              |
|                   |                |                  |                    |                              |
|                   |                |                  |                    |                              |

| All criteria were met _X |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

# VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and  $\le$  AL, report the compound as not detected (U) at the SQL.

If the concentration is  $\geq$  SQL but  $\leq$  AL, report the compound as not detected (U) at the reported concentration.

If the concentration is  $\geq$  SQL and > AL, report the concentration unqualified.

### Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

| CONTAMINATION SOURCE/LEVEL | COMPOUND | CONC/UNITS | AL/UNITS | SQL      | AFFECTED<br>SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------|----------|------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |          |            |          |          | and the same of th |
|                            |          |            |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |          |            |          | 200      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |          |            | 100      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |          |            |          | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |          |            |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |          |            |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |          |            |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |          |            |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |          |            |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |          |            |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| All criteria were met _X |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

### SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

| QA | M | DI  | F | IN |
|----|---|-----|---|----|
| 38 | m | TI. |   | IJ |

# SURROGATE COMPOUND

ACTION

1.2-DICHLOROETHANE**d4** 

Toluene**d8** 

| _Surrogate_recoveries_within_laboratory_control_limits |                   |  |  |  |  |
|--------------------------------------------------------|-------------------|--|--|--|--|
|                                                        |                   |  |  |  |  |
|                                                        |                   |  |  |  |  |
| QC Limits* (Air)                                       |                   |  |  |  |  |
| LL_to_UL70to_130                                       | _70to_13070to_130 |  |  |  |  |

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

### Actions:

| QUALITY            | %R < 10% | %R = 10% - LL | %R > UL |
|--------------------|----------|---------------|---------|
| Positive results   | J        | J             | J       |
| Nondetects results | R        | UJ            | Accept  |

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowN/A   |

# VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

### 1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

| oampie iD          |                      | _          | Manix   | /Level:          |                   |
|--------------------|----------------------|------------|---------|------------------|-------------------|
| MS OR MSD          | COMPOUND             | % R        | RPD     | QC LIMITS        | ACTION            |
| MS/MSD<br>accuracy | _are_not_required_as | _part_of_l | Method_ | TO-15;_blank_spi | ke_used_to_assess |

### Actions:

| QUALITY            | %R < LL | %R > UL |
|--------------------|---------|---------|
| Positive results   | J       | J       |
| Nondetects results | R       | Accept  |

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

| All criteria were met |
|-----------------------|
| Critena were not met  |
| and/or see belowN/A   |

# VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

| Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Matrix/Level/Unit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPLE<br>CONC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MS CONC. | MSD CONC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | % RSD | ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | A STATE OF THE STA |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | The same of the sa |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Actions:

<sup>\*</sup> If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

<sup>\*</sup> If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

# VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

# 1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

|         | LCS ID         | COMPOUND                | % R                 | QC LIMIT |
|---------|----------------|-------------------------|---------------------|----------|
| LCS/LCS | SD_%_recoverie | s_and_RPD_within_labora | tory_control_limits |          |
|         |                |                         |                     |          |
|         |                |                         |                     |          |
|         |                |                         |                     |          |

- \* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- \* If QC limits are not available, use limits of 70 130 %.

### Actions:

| QUALITY            | %R < LL | %R > UL |
|--------------------|---------|---------|
| Positive results   | J       | J       |
| Nondetects results | R       | Accept  |

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

# 2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

|     |                            |                                                | All criteria were metX<br>Criteria were not met<br>and/or see below |
|-----|----------------------------|------------------------------------------------|---------------------------------------------------------------------|
| IX. | LABORATOR                  | Y DUPLICATE PRECISION                          |                                                                     |
|     | Sample IDs:<br>Sample IDs: | LCS/LCSD_(02/08/2016)<br>LCS/LCSD_(02/15/2016) | Matrix:Air<br>Matrix:Air                                            |

Laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

| COMPOUND              | SQL        | SAMPLE CONC.    | DUPLICATE CONC.   | RPD | ACTION |
|-----------------------|------------|-----------------|-------------------|-----|--------|
| RPD within laboratory | and genera | ally acceptable | e control limits. |     |        |
|                       |            |                 |                   |     |        |
|                       | 11         | ļ               |                   |     |        |
|                       |            | <del> </del>    |                   |     |        |
|                       |            |                 |                   | l   |        |

### Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

|     |                      |       | All criteria were metX<br>Criteria were not met<br>and/or see below |
|-----|----------------------|-------|---------------------------------------------------------------------|
| IX. | FIELD DUPLICATE PREC | ISION |                                                                     |
|     | Sample IDs:          | •     | Matrix:Air                                                          |

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD  $\pm$  25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

| COMPOUND                 | SQL                 | SAMPLE<br>CONC.    | DUPLICATE CONC.       | RPD                          | ACTION                           |
|--------------------------|---------------------|--------------------|-----------------------|------------------------------|----------------------------------|
| No field duplicate calls | sated with this dat | a packago: LCS     | A CSD moulto uso      | d to accord                  | precision. RPD within laboratory |
| and generally acceptal   | ble control limits. | Field duplicate fo | or the project includ | d to assess<br>ded in data p | package SDG 1602024A.            |
|                          |                     |                    |                       |                              |                                  |
|                          |                     |                    |                       | 1                            | 1                                |

### Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

| All criteria were met _ | X_   |
|-------------------------|------|
| Criteria were not met   |      |
| and/or see below        | -0.0 |

## X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- \* Area of +40% or -40% of the IS area in the associated calibration standard.
- \* Retention time (RT) within  $\pm$  0.06 seconds of the IS area in the associated calibration standard.

| DATE     | SAMPLE ID                               | IS OUT          | IS AREA                                      | ACCEPTABLE<br>RANGE  | ACTION       |
|----------|-----------------------------------------|-----------------|----------------------------------------------|----------------------|--------------|
| _        | tandard_area_and_re<br>ration_standards | etention_times_ | within_laboratory                            | _control_limits_for_ | both_samples |
|          |                                         |                 | 0000 0000 0000 0000 0000 0000 0000 0000 0000 |                      | VEN VAL      |
| Actions: | ×                                       |                 |                                              |                      |              |

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

| QUALITY             | IS AREA < -40% | IS AREA > +40% |
|---------------------|----------------|----------------|
| Positive results    | J              | J              |
| Nondetected results | R              | ACCEPT         |

If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

# XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1602064B-11A

RF = 0.80210

[] = (507406)(400)/(460847)(0.80210)

= 549.073 ppbv OK

| All criteria were met _X |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

# XII. QUANTITATION LIMITS

# A. Dilution performed

| SAMPLE ID        | DILUTION FACTOR            | REASONS FOR DILUTION             |
|------------------|----------------------------|----------------------------------|
| 1602024B-11A     | 796 X                      | Analytes above calibration range |
| 1602024B-14A     | 17 X                       | Analytes above calibration range |
| 1602024B-16A     | 9.48 X                     | Analytes above calibration range |
| All samples were | e diluted by a factor of < | 2.51x.                           |
|                  | -                          |                                  |
|                  |                            |                                  |
|                  |                            |                                  |
|                  |                            |                                  |
|                  |                            |                                  |
|                  |                            |                                  |
|                  |                            |                                  |

| B. | Percent Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | List samples which have ≤ 50 % solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | THE RESIDENCE OF THE PARTY OF T |

# Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)